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a b s t r a c t

In this paper, we study the problem of locating path-shaped facilities on a tree network
with non negative weights associated to the vertices and positive lengths associated to
the edges. Our objective is to ensure low variability of the distribution of the distances
from the demand points (clients) to a facility. In the location process, we take into account
both the maximum and the minimum weighted distances of a client to a facility and we
formulate our problem in order to minimize the ‘‘Range’’ function which is defined as
the difference between the maximum and the minimum weighted distances from the
vertices of the network to a facility. We discuss different formulations of the problem
providing polynomial time algorithms for each of them. We solve in polynomial time all
the above problems alsowhen an additional constraint on themaximum length of the path
is introduced.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In location analysis, the issue of equity among clients has become a relevant criterion especially when locating public
facilities. Equity refers to a fair location of the facilities w.r.t. the distribution of the clients’ demand in a geographical area
and the objective is to locate facilities in order to ensure a low variability of the distribution of the distances from the
demand points (clients) to them. In particular, in this paper, we study the problem of locating path-shaped facilities on tree
networks. Location problems on a network related to extensive facilities, such as paths or trees, are studied nowadays (for
a comprehensive review, see, for example, [4,6,20,26]). In practice, the problem consists of locating a connected structure
in a network in order to supply a set of costumers. Commonly used objective functions are the sum of the distances from
each client to its nearest facility (median criterion) [8,11,16,24], or the maximum of these distances (center or eccentricity
criterion) [7,9,22,23], or combinations of the two [1,2,17,27]. Also the more general ordered median objective can be
adopted [10,21]. Here we consider themaximum and theminimumweighted distances of a client to a facility andminimize
theweighted Range functionwhich is defined as the difference between themaximumand theminimumweighted distances
from the vertices of the network to the path. The problem of finding a path minimizing the weighted Range function arises,
for example, when locating a transit line for commuters with the aim of making the line easily accessible to all the clients
scattered in a given territory.

The weighted Range function can be considered as a generalization of the weighted center criterion, in the sense that it
tries to overcome some problems related to the eccentricity. In fact, it is well-known, (see, [13]), that the weighted center
criterion tends to favor few clients that are concentrated in a given geographical area, far from the facility, to the detriment
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Fig. 1. An example of the different locations of a path when using the weighted Range criterion or the weighted eccentricity criterion. Assume to locate
a path connecting two vertices and with length at most 1. The path minimizing the weighted Range function is in bold, while the one minimizing the
weighted eccentricity is represented by a dashed line.

Table 1
Summary of results.

Range-type problems Unweighted case Weighted case Length constraints
Problem Discrete Continuous Discrete Continuous Discrete Continuous

P1 min R(P) O(n) O(n2) O(n2) O(n3) O(n2) O(n3)

P2 min E(P) O(n) O(n) O(n2) O(n2) O(n2) O(n3)s.t. µ(P) ≥ γ

P3 max µ(P) O(n) O(n) O(n2) O(n2) O(n2) O(n3)s.t. E(P) ≤ γ

of most clients closer to the facility but dispersed in the rest of the territory. On the contrary, the weighted Range objective
function takes into account also clients ‘‘close’’ to the facility with the final aim of guaranteeing that all clients are fairly
treated. Fig. 1 provides a simple example of the location of a path in a given network, with both the weighted Range and the
weighted center criterion, showing that the former provides a ‘‘more central’’ facility than the latter.

Some recent papers [5,19] introduced other objectives and criteria, such as the variance criterion, related to the variability
of the distribution of the distances from the demand points to a facility. Actually, equity problems have been already
considered in the literaturewhen facing the classical point location problems. In particular, theminimumRange single point
location has been introduced in [15]. The extension to the case of locating path-shaped facilities by using the Range criterion
was provided in [18] where the problem was formulated in the following three different versions: locating a path which
minimizes the Range, locating a path which minimizes the maximum distance subject to the minimum distance bounded
belowby a constant, and locating a pathwhichmaximizes theminimumdistance subject to themaximumdistance bounded
above by a constant. In [18], it is shown that these problems are NP-Hard for general networks, while for tree networks
efficient polynomial time algorithms are provided. However, in [18] all these problems were studied in the special case in
which all the vertices of the network have the same weight. Here we extend our previous results to the more general case
of arbitrary vertex weights. It is well-known, (see, [25]), that the introduction of arbitrary weights for the vertices makes
location problems much difficult to solve, and completely different approaches may be required in order to get polynomial
time algorithms with low complexity. Indeed, assigning non negative weights to the vertices of a network may cause the
lost of some desirable properties for the distance function, like, for example, the triangular inequality.

Relying on a weighted distance function, in this paper we study the above listed Range-type problems on tree networks.
We consider the discrete version of the problems, that is, when the endpoints of the located path must correspond to some
vertices of the tree, and the continuous one, that is, when the endpoints of an optimal path may lie also in the interior of
an edge. Moreover, all the problems are discussed by including an additional constraint on the length of the path. For the
solution of these problems we provide polynomial time algorithms with low complexity (see Table 1).

The paper is organized as follows. In Section 2, we introduce the problem and some basic notation and definitions.
Section 3 describes the algorithm for solving the minimumweighted Range problem on a tree both in the continuous and in
the discrete versions. It is also shown that the additional constraint on the length of the path does not increase the complexity
of the algorithm. In Section 4 we focus on the other two formulations of the Range problem. Although, in principle, one can
obtain an algorithm for these problems with a complexity cubic in the number of the vertices of the tree by using the same
algorithmic strategy of the previous section (with orwithout the length constraint), we show that, in the special casewithout
the length constraint, this complexity can be lowered to be quadratic.

2. Notation and definitions

Let T = (V , E) be a tree with |V | = n. Suppose that a non negative weight wv is associated to each vertex v ∈ V , while
a positive real length ℓ(e) = ℓ(u, v) is assigned to each edge e = (u, v) ∈ E. When T is rooted at a vertex r it is denoted
by Tr . We denote by V (Tr) the set of vertices of Tr . For any vertex v, let Tv be the subtree of Tr rooted at vertex v, S(v) the
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set of children of v in Tr , and p(v) the parent of v in Tr . Clearly, a vertex v is a leaf if and only if |S(v)| = 0. Given an edge
(u, v) in Tr , suppose that v = p(u), then for a point x in the interior of (u, v), we also refer to x as the distance d(u, x). For
any pair of points x and y in T , that may be vertices or may belong to the interior of an edge, we denote by P(x, y) the unique
path connecting x and y. We denote by L(P(x, y)) the length of P(x, y). In the following, we will avoid to specify one or both
the endpoints of a path when it is not necessary. A path P is discrete if both its endpoints are vertices of T , otherwise it is
continuous. We denote by V (P) the set of vertices belonging to P . Let d(u, P) be the distance from a vertex u to a path P , that
is, the length of the shortest path from u to a vertex or an endpoint of P . For any point x in T , the weighted eccentricity of x is
E(x) = maxu∈V wud(u, x), while for any path P the weighted eccentricity of P is E(P) = maxu∈V wud(u, P). We also denote
by µ(x) and µ(P) the minimum weighted distance from a vertex u to x and the minimum weighted distance from a vertex
u to P , respectively. One has µ(x) = minu∈V\x wud(u, x) if x is a vertex, and µ(x) = minu∈V wud(u, x) if x is a point, while
for a path P one has µ(P) = minu∈V\V (P) wud(u, P).

For a tree T = (V , E), we consider the weighted Range objective function which is a non negative variability measure
defined as follows:

R(P) = max
u∈V\V (P)

wud(u, P) − min
u∈V\V (P)

wud(u, P). (1)

Given a path P , since d(u, P) = 0 for each u ∈ V (P), (1) can be rewritten in the equivalent form:

R(P) = E(P) − µ(P). (2)

In this paper we investigate the problem of finding a path P in T that minimizes the weighted Range function (problem
P1). Wewill study both the discrete and the continuous cases also considering the constrained version of the problems with
a bound on the length of the path. For the unconstrained version, we suppose that the tree T is not a path, since otherwise
one can always assume that the optimal path is the tree itself (see, [18]). On the other hand, when there is a bound on the
length of the path, the problem is not trivial even if T is a path.

As in [18], we also study the following two related problems, that we call P2 and P3, respectively:

min E(P)

s.t. µ(P) ≥ γ
(3)

and

max µ(P)

s.t. E(P) ≤ γ
(4)

where γ is a given non negative constant.
These problems were already formulated and solved in [18] for the location of a path in the particular case when all the

vertices of the tree T have the same weight, providing linear time algorithms for all of them but one which was instead
proved to be solvable in quadratic time (see Table 1). Here we develop the analysis for the more general case of arbitrary
non negative weights associated to the vertices of T . As we will see, the introduction of vertex weights makes the problem
much difficult to solve and a completely different approach is required in order to get polynomial time algorithms with low
complexity. Table 1 reports a summary of the complexity results related to the algorithms proposed in [18] and the new
results provided in the present paper (in bold), showing that in the more general case the algorithm complexity increases
by one order of magnitude. Moreover, the continuous version of the unconstrained problem P1 shows to be more difficult
than the others, independently from the vertex weights or the length constraint. In this paper we also study the Range
minimization problems P1, P2 and P3 with an additional constraint on the length of the path for which we show that the
time complexity is cubic in the most difficult case related to the location of continuous paths. However, for the discrete
version of these problems, we are still able to provide O(n2) solution algorithms.

3. The general solution approach for the minimization of the Range objective function

Consider the problem of finding in T a continuous path that minimizes the weighted Range objective function
(i.e., problem P1). The idea of the algorithm is to root the tree at a vertex r , and consider the rooted tree Tr . Then, for every
pair of edges (u, v) and (k, h) in Tr , we find the path P(x, y)with x ∈ (u, v) and y ∈ (k, h) thatminimizes the Range function.
The optimal solution for problem P1 is a path P∗ that minimizes R(P) among all the paths P(x, y), with x, y varying in two
edges of T . In order to find P∗, for every edge (u, v), with v = p(u), the algorithm evaluates all the possible edges (k, h) by
visiting the two subtrees Tu and Tp(u) that can be obtained from Tr by removing (u, p(u)). Note that Tp(u) is the subtree of T
whose set of vertices is V \ V (Tu) (see Fig. 2).

3.1. Basic formulas

Consider a vertex u in Tr , and let S(u) = {s1, s2, . . . , smu} be the set of the children of u, with |S(u)| = mu. First, we
compute the maximum and the minimum weighted distances from vertex u to the vertices in each subtree Tsi , E

si(u) and
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Fig. 2. The subtree Tu and the subtree Tp(u) that can be obtained from Tr by removing (u, v).

µsi(u), i = 1, . . . ,mu as follows:

Esi(u) = max
z∈V (Tsi )

wzd(u, z),

µsi(u) = min
t∈V (Tsi )

wtd(u, t).

Furthermore we need to compute Ep(u)(u) and µp(u)(u) that denote the maximum and minimum weighted distances
from u to the vertices in Tp(u):

Ep(u)(u) = max
z∈V (Tp(u))

wzd(u, z),

µp(u)(u) = min
t∈V (Tp(u))

wtd(u, t).

The following result is straightforward.

Proposition 1. For all the vertices u in Tr , the quantities Esi(u), µsi(u), i = 1, . . . ,mu, and Ep(u)(u), µp(u)(u) can be computed
once in O(n2) time.

On the basis of the abovequantities, for any given s ∈ S(u), wedefine the eccentricity ofuw.r.t. the vertices inV (Tu)\V (Ts)
as follows:

Es(u) =

max
si∈S(u)
si≠s

Esi(u) if |S(u)| ≥ 2

0 if |S(u)| = 0 or 1.
(5)

Similarly, for the minimum distance from uw.r.t. the vertices in V (Tu) \ V (Ts), one has:

µs(u) =

 min
si∈S(u)
si≠s

µsi(u) if |S(u)| ≥ 2

+∞ if |S(u)| = 0 or 1.
(6)

These quantities will be exploited in the main procedure to solve the weighted Range problems. Actually, for a given u in Tr
such that |S(u)| ≥ 2, we compute:

E0(u) = max
si∈S(u)

Esi(u); smax ∈ argmax{Esi(u) : si ∈ S(u)}, (7)

and

Esmax(u) = max
si∈S(u)
si≠smax

Esi(u). (8)

When |S(u)| = 1, one has E0(u) = Es1(u) and Esmax(u) = 0, while, when |S(u)| = 0, we set E0(u) = Esmax(u) = 0.
Notice that E0(u) and Esmax(u) are the maximum and the second maximum weighted distances from u to the vertices in

i=1,...,mu
V (Tsi), respectively. Similarly, for the minimum distance we compute:

µ0(u) = min
si∈S(u)

µsi(u); smin ∈ argmin{µsi(u) : si ∈ S(u)}, (9)
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and

µsmin(u) = min
si∈S(u)
si≠smin

µsi(u). (10)

When |S(u)| = 1, one hasµ0(u) = µs1(u) andµsmin(u) = +∞, while, when |S(u)| = 0,we setµ0(u) = µsmin(u) = +∞.
Quantities µ0(u) and µsmin(u) are the minimum and the second minimum weighted distances from u to the vertices in

i=1,...,mu
V (Tsi), respectively.

Then, if |S(u)| ≥ 2, the computation of (5) and (6) relies only on quantities (7)–(10), and one has:

Es(u) =


E0(u) if s ≠ smax
Esmax(u) if s = smax

(11)

and

µs(u) =


µ0(u) if s ≠ smin
µsmin(u) if s = smin.

(12)

Proposition 2. For all the vertices u in Tr and all the children of u, si, i = 1, . . . ,mu, the quantities Esi(u) and µsi(u), can be
computed once in O(n2) time.

3.2. The algorithm

Consider two fixed edges (u, v) and (k, h) in Tr . In this section we explain how the algorithm finds a continuous path
P(x, y), with x ∈ (u, v) and y ∈ (k, h) (possibly (u, v) = (k, h)) that minimizes the weighted Range objective function. The
general idea of the algorithm is to fix one edge, say (u, v), and to evaluate all the possible paths P(x, y) with x ∈ (u, v) and
y in any other edge (k, h) in Tr . Three different cases are possible:

(i) (k, h) is in Tu;
(ii) (k, h) is in Tp(u) and belongs to the path from v = p(u) to the root r;
(iii) (k, h) belongs to a subtree of Tp(u) rooted at a vertex belonging to the path from v = p(u) to the root r .

The procedure is repeated for all the possible edges (u, v) in Tr .
Consider a fixed edge (u, v). We first analyze case (i) related to a continuous path P(x, y) with x belonging to (u, v) and

y belonging to an edge (k, h) in Tu (see Fig. 3). In the rest of this section, for a given (k, h), we assume that h = p(k) and
for a point y in (k, h), we refer to y also as the distance d(k, y). In case (i), we evaluate all edges (k, h) in Tu by a top-down,
level-by-level, visit of Tu. In order to compute the weighted Range of P(x, y), say R(P(x, y)), we need the maximum and the
minimum weighted distances E(P(x, y)) and µ(P(x, y)) in Tr .

The maximum weighted distance E(P(x, y)) can be attained at y, at x, or at some vertices along P(x, y), and, therefore, it
is given by the maximum among the following three quantities:

Ey = max
z∈V (Tk)

{wzd(z, k) + wzy}, (13)

Ex = max
z∈V (Tp(u))

{wzd(z, v) + wz[ℓ(u, v) − x]}, (14)

EP(u,h) = max{ max
d,q∈V (P(u,h))
d=p(q);d≠h

Eq(d); Ek(h)}, (15)

that is:

E(P(x, y)) = max{Ey, Ex, EP(u,h)}. (16)

Similarly, for µ(P(x, y)) we have:

µ(P(x, y)) = min{µy, µx, µP(u,h)}, (17)

where:

µy = min
t∈V (Tk)

{wtd(t, k) + wty}, (18)

µx = min
t∈V (Tp(u))

{wtd(t, v) + wt [ℓ(u, v) − x]}, (19)

µP(u,h) = min{ min
d,q∈V (P(u,h))
d=p(q);d≠h

µq(d); µk(h)}. (20)

For the two edges (u, v) and (k, h) ∈ Tu, we can find the two endpoints x̄ ∈ (u, v) and ȳ ∈ (k, h) that minimize R(P(x, y))
by solving a suitable linear program. We distinguish two cases, that is, when (u, v) = (k, h)- i.e., both x and y belong to the
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Fig. 3. An example of a path P(x, y) with x ∈ (u, v) and y ∈ (k, h) in Tu (case (i)).

same edge, say (u, v)- and when (u, v) ≠ (k, h). In the first case, considering formulas (13)–(14) and (18)–(19), we have to
solve the following problem:

min
E,µ,x,y

E − µ

s.t.
wzd(z, k) + wzy ≤ E ∀z ∈ V (Tk)

wzd(z, v) + wz

ℓ(u, v) − x


≤ E ∀z ∈ V (Tp(u))

wtd(t, k) + wty ≥ µ ∀t ∈ V (Tk)

wtd(t, v) + wt

ℓ(u, v) − x


≥ µ ∀t ∈ V (Tp(u))

y ≤ x
E, µ, x, y ≥ 0.

(21)

When (u, v) ≠ (k, h), it suffices to add to problem (21) the following two constraints:

EP(u,h) ≤ E
µP(u,h) ≥ µ

(22)

where EP(u,h) and µP(u,h) are defined by formulas (15) and (20), respectively.
In both versions, the linear program has four variables and O(n) constraints, so that it can be solved in O(n) time [14].

In order to formulate problem (21) with constraints (22) the two bounds EP(u,h) and µP(u,h) must be available. We want
to emphasize here that, for each pair of edges (u, v) and (k, h) in Tu, computing these two quantities from scratch would
require O(n2) time. However, exploiting formulas (11) and (12), the same can be done in constant time during the top-down
visit of Tu. Let (k, h) be the current edge and let (h, a) be the edge in Tu with a = p(h). When moving top-down from the
edge (h, a) to the edge (k, h), the quantities EP(u,h) and µP(u,h) can be updated from the corresponding EP(u,a) and µP(u,a) as
follows:

EP(u,h) = max{EP(u,a), max
si∈S(h)
si≠k

Esi(h)} = max{EP(u,a), Ek(h)} (23)
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Fig. 4. An example of a path P(x, y) with y ∈ (k, h) belonging to the path P(v, r) (case (ii)).

and

µP(u,h) = min{µP(u,a), min
si∈S(h)
si≠k

µsi(h)} = min{µP(u,a), µk(h)}. (24)

When u = h, the subpath P(u, h) corresponds to the single vertex u and the above formulas are initialized as EP(u,h) =

Ek(u) = Ek(h) and µP(u,h) = µk(u) = µk(h), respectively.
We now analyze case (ii) of a continuous path P(x, y) with x ∈ (u, v) and y ∈ (k, h), with h = p(k), and (k, h) belonging

to the path P(v, r) from v to the root r (see, Fig. 4). In this case, we evaluate all the candidate edges (k, h) by a bottom-up
visit of P(v, r).

As before, given a path P(x, y), we have to evaluate E(P(x, y)) and µ(P(x, y)) and we formulate problem (21) with
constraints (22) for each possible (k, h). Here we compute Ex, Ey, and EP(v,k) as follows. The maximum weighted distance
w.r.t. x is attained through vertex u and it is given by:

Ex = max
z∈V (Tu)

{wzd(z, u) + wzx}. (25)

For the maximum weighted distance w.r.t. the subpath P(v, k), we have:

EP(v,k) = max
d,q∈V (P(u,k))
d=p(q);d≠u

Eq(d). (26)

Moreover, we have:

Ey = max
z∈V (Tp(k))

{wzd(z, h) + wz[ℓ(k, h) − y]}. (27)

Similarly, we can compute all the quantities for determining µP(x,y) as follows:

µx = min
t∈V (Tu)

{wtd(t, u) + wtx}. (28)

µP(v,k) = min
d,q ∈V (P(u,k))
d=p(q);d≠u

µq(d), (29)

and

µy = min
t∈V (Tp(k))

{wtd(t, h) + wt [ℓ(k, h) − y]}. (30)

Visiting the path from v to r in Tr bottom-up, let (k, h) be the current edge and let (b, k) be the edge in P(v, r) with
k = p(b). When moving bottom-up from the edge (b, k) to the new edge (k, h), the quantities EP(v,k) and µP(v,k) can be
updated from the corresponding EP(v,b) and µP(v,b) in constant time using the following recursive formulas:

EP(v,k) = max{EP(v,b), Eb(k)} (31)

and

µP(v,k) = min{µP(v,b), µb(k)}. (32)
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Fig. 5. An example of a path P(x, y) with y ∈ (k, h) belonging to the subtree of Tp(u) rooted at a vertex c in P(v, r) (case (iii)).

When v = k, the path P(v, k) corresponds to the single vertex v and the above formulas are initialized at EP(v,k) =

Eu(k) = Eu(v) and µP(v,k) = µu(k) = µu(v), respectively.
In order to find the path P(x̄, ȳ) that minimizes R(P(x, y)) among all the paths P(x, y) with x belonging to (u, v), and y

belonging to (k, h) lying in the path from v to r , one can still formulate and solve a linear program analogous to (21) with
the additional constraints (22) in O(n) time.

Consider now case (iii) where y ∈ (k, h), with h = p(k) and (k, h) belonging to a subtree of Tp(u) rooted at a vertex in the
path from v = p(u) to the root r (see, Fig. 5).

As before, it is necessary to evaluate Ex, Ey and EP(v,h) appropriately. First of all, notice that formulas (25) and (28) can
be still used for computing Ex and µx. Also for the quantities Ey and µy, we can refer directly to formulas (13) and (18). It
remains to consider themaximumandminimumweighted distancesw.r.t. the subpath P(v, h), i.e., the quantities EP(v,h) and
µP(v,h), respectively. Let c be the least common ancestor in Tr of the vertices u and k. Notice that, the least common ancestor
of every pair of vertices in a given rooted tree with n vertices can be computed once in O(n) [3]. Let (qc1, c) be the last edge
in the path P(v, c) ⊆ P(v, h) and (qc2, c) be the first edge along P(c, h) ⊆ P(v, h) (Fig. 5). Notice that c may coincide with
the root r . Then, we have:

EP(v,h) = max{EP(v,qc1)
, max

si∈S(c)
si≠qc1,qc2

Esi(c), Ep(c)(c), EP(qc2,h)
}, (33)

and:

µP(v,h) = min{µP(v,qc1)
, min

si∈S(c)
si≠qc1,qc2

µsi(c), µp(c)(c), µP(qc2,h)
}. (34)

Notice that, in case (iii), for a fixed (u, v) and a vertex c belonging to P(v, r), the candidate edges (k, h) are evaluated by a
top-down visit of the tree induced by the vertices in V (Tc)\V (Tqc1). During this visit, in formulas (33) and (34) the quantities
EP(v,qc1)

and µP(v,qc1)
are recursively updated in constant time by formulas similar to (31) and (32), respectively. For EP(qc2,h)

and µP(qc2,h)
formulas analogous to (23) and (24) can be adopted. Moreover, notice that, if at the beginning one computes

in Tr also the third maximum and minimum weighted distances from any vertex u ∈ V to the vertices in


i=1,...,mu
V (Tsi),

then, for c such that |S(c)| ≥ 3, the quantities

max
si∈S(c)

si≠qc1,qc2

Esi(c), and min
si∈S(c)

si≠qc1,qc2

µsi(c)

are automatically available when formulas (33) and (34) must be computed. When |S(c)| < 3, the above two quantities
must not be computed at all.

In the special case when c = r the two quantities Ep(c)(c) and µp(c)(c) do not appear in (33) and (34).
The above discussion shows that the complexity of the algorithm does not increase in cases (ii) and (iii) w.r.t. case (i).

Therefore, once all the necessary quantities have been computed, the following complexity result holds.

Proposition 3. The time complexity for computing the weighted Range of a path P(x, y) with x belonging to a fixed edge (u, v)
and y to another fixed edge (k, h) in Tr is O(n). Hence, the overall time complexity for computing the path P in T that minimizes
the Range function is O(n3).

The previous approach can also be used for solving the more general problem of finding a continuous path P that
minimizes the Range objective function with an additional constraint on the length of P , which we denote by L(P) =
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e∈P ℓ(e), that is, L(P) ≤ L̂. Consider for example the case when (k, h) ∈ Tu (the other cases are similar), the approach

is exactly the same as before but, when solving (21) with constraints (22) one must first check if L(P(u, h)) is strictly less
than L̂, since otherwise we do not need to solve the problem because we already know that it is infeasible. In the particular
case when L(P(u, h)) = L̂, the only feasible path is P(x, y) = P(u, h), while if L(P(u, h)) < L̂, it suffices to consider also the
following additional constraint:

L(P(u, h)) + x + ℓ(k, h) − y ≤ L̂,

that is,

x − y ≤ L̂ − L(P(u, h)) − ℓ(k, h).

Since the discrete weighted path Range problem is a special case of the continuous one, the above approach can be still
applied to the former problem with an overall time complexity of O(n2) due to the fact that, in the discrete case, we do not
need to formulate and solve any linear program. Indeed, for any two vertices u and h in Tr , whichever the configuration of
the discrete path P(u, h) (i.e., cases (i),(ii), or (iii)), E(P(u, h)) and µ(P(u, h)) can be computed by using recursive formulas
similar to those introduced at the beginning of this section. In particular, formulas discussed in Section 3.1 can be applied in
a preprocessing phase to compute, for all u in Tr , Esi(u) andµsi(u), i = 1, . . . ,mu; Ep(u)(u), µp(u)(u); Esi(u) andµsi(u) for all
children of u. By Propositions 1 and 2 these quantities can be obtained once in O(n2) time. In addition, as already discussed
above, EP(u,h) and µP(u,h) can be updated in constant time by using formulas (23) and (24), respectively. Thus, given a vertex
u ∈ V (Tr), finding the weighted Range of a path P(u, h) for all h ∈ V (Tr) requires O(n) time, and, therefore, the overall time
complexity for solving the discrete version of the Range problem P1 is O(n2). The additional constraint on the length of the
optimal path does not increase such complexity.

To conclude, we note that the algorithm described in this section could be applied also to solve the continuous version
of the two constrained Range-type problems P2 and P3, with or without the length constraint, in time O(n3). However, in
the following section, we show that, when there is no length constraint, also the continuous versions of P2 and P3 can be
solved more efficiently in time O(n2).

4. Problems P2 and P3

In this section, we discuss both the discrete and the continuous versions of the constrained problems P2 and P3, and
show that both can be solved in O(n2) time. In the discrete case, both P2 and P3 can be solved by using the same algorithm
described at the end of Section 3.2, with the additional task of performing a check for feasibility on each evaluated path with
respect to µ(P) in P2 and to E(P) in P3. For the continuous versions of the two problems, in the following we will show that
they can be reformulated as equivalent discrete problems defined on a new augmented tree T̄ with O(n) additional vertices
w.r.t. T . This implies that also the two continuous problems P2 and P3 can be solved with the same O(n2) complexity by
applying to T̄ the discrete-case algorithm.

Consider the continuous version of problem P2, that, for a given γ ≥ 0 consists of finding the two points x and y such
that:

min
x,y

E(P(x, y))

s.t. µ(P(x, y)) ≥ γ .

For a point y in (k, h), here we refer to y also as the distance from the point y to vertex k (see Fig. 6). We also consider
(k, h) as a continuous interval of values. For a given edge (k, h) in T we denote by T (k) and T (h) the two subtrees that can
be obtained by removing (k, h) from T , and containing k and h, respectively (see, Fig. 6). As before, the set of vertices of T (k)
and T (h) are denoted by V (T (k)) and V (T (h)), respectively.

Proposition 4. Let P(x̄, h) be a path in T with x̄ fixed in T (h), and such that µ(P(x̄, h)) ≥ γ and µ(P(x̄, k)) < γ . Then, there
exists a unique point ȳ in (k, h) such that: (a) µ(P(x̄, ȳ)) = γ ; (b) for every y ≠ ȳ in (k, h) satisfying µ(P(x̄, y)) ≥ γ , one has:

µ(P(x̄, y)) ≥ µ(P(x̄, ȳ)), and E(P(x̄, y)) ≥ E(P(x̄, ȳ)).

Proof. For every z in T (k) the weighted distance from z to P(x̄, y), with y in (k, h), is given by:

wzd(z, y) = wzd(z, k) + wzy,

and it is a continuous monotone non decreasing function w.r.t. y in (k, h). This implies that E(P(x̄, y)) and µ(P(x̄, y)) are
continuous monotone non decreasing functions in y as well. Hence, due to continuity, there must exist a point ȳ in (k, h)
such that µ(P(x̄, ȳ)) = γ , and ∀y ≠ ȳ in (k, h) for which µ(P(x̄, y)) ≥ γ , one has E(P(x̄, y)) ≥ E(P(x̄, ȳ)).

Notice that, when µ(P(x̄, k)) ≥ γ , one always has ȳ = k. �

The above result is based on the fact that, once the edge (k, h) and the point x̄ are fixed (e.g. x̄ ∈ V (T (h))) such that P(x̄, h)
is feasible for P2, the location of ȳ in (k, h) depends only on the edge (k, h) and on the subtree T (k). In addition, also notice
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x

T(h)T(k)

k
y

h

Fig. 6. The two subtrees T (k) and T (h) obtained by deleting the edge (k, h), and a point at distance y from vertex k.

that the location of ȳ in (k, h) does not depend on x̄, but only on the fact that x̄ is in T (h), that is, the same location of ȳ in
(k, h) holds for all P(x̄, ȳ), whichever the location of x̄ in T (h).

Obviously, the same result applies if one fixes x̄ arbitrarily in T (k) and searches for a path P(x̄, ȳ) with ȳ in (k, h) that
minimizes the eccentricity function under the assumption that µ(P(x̄, k)) ≥ γ . Also in this case, when µ(P(x̄, h)) ≥ γ , one
always has ȳ = h.

The above discussion implies that, besides k and h, there are only two points in (k, h) that are ‘‘relevant’’ for P2 and one
can always augment the set of vertices of T by adding them to V . We call such new vertices semivertices, and we denote by
T̄ the corresponding augmented tree. The optimal solution of the continuous version of problem P2 in T corresponds to the
optimal solution of the discrete version of the same problem P2 in T̄ . Thus, the continuous optimal solution can be found by
applying to T̄ the discrete version of the algorithm described in Section 3.2, provided that at each step a check for feasibility
is performed on the current path P .

In the following we explain how the two semivertices can be located in any given edge of T . Consider edge (k, h) and
suppose that x̄ ∈ V (T (h)). In order to find the semivertex ȳ ∈ (k, h), one must solve the following linear program:

min y
s.t.
wzd(z, k) + wzy ≥ γ ∀z ∈ V (T (k))
0 ≤ y ≤ ℓ(k, h).

(35)

Problem (35) is a linear program with one variable and O(nk) constraints, with nk = |V (T (k))|, and it can be solved
in time O(nk) [14]. A similar problem can be formulated to find the semivertex in (k, h) related to x̄ ∈ V (T (k)) in time
O(nh), nh = |V (T (h))|. It follows that the overall time complexity for augmenting the tree T is O(n2).

We now analyze the special case of a path P(x, y) with both x and y in (k, h). In this case, we can find the path P(x̄, ȳ) by
directly solving the following linear program.

min E
s.t.
E ≥ wzd(z, k) + wzy ≥ γ ∀z ∈ V (T (k))

E ≥ wtd(t, h) + wt

ℓ(k, h) − x


≥ γ ∀t ∈ V (T (h))

0 ≤ y ≤ x ≤ ℓ(k, h).

(36)

Problem (36) is a linear program with three variables and O(n) constraints and it can be solved in linear time for each
edge in T . The above discussion leads to the following result.

Proposition 5. The overall time complexity for solving the continuous version of problem P2 is O(n2).

Consider now the continuous version of problem P3, that, for a given γ ≥ 0, consists of finding the two points x and y
such that:

max
x,y

µ(P(x, y))

s.t. E(P(x, y)) ≤ γ .

As before, consider an edge (k, h) and the two subtrees that can be obtained from T by removing it and containing k and
h, respectively. The following proposition holds.
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Proposition 6. Let P(x̄, h) be a path in T with x̄ fixed in T (h), and such that E(P(x̄, k)) ≤ γ and E(P(x̄, h)) > γ . Then, there
exists a unique point ȳ in (k, h) such that: (a) E(P(x̄, ȳ)) = γ ; (b) for every y ≠ ȳ in (k, h) satisfying E(P(x̄, y)) ≤ γ , one has:

E(P(x̄, y)) ≤ E(P(x̄, ȳ)), and µ(P(x̄, y)) ≤ µ(P(x̄, ȳ)).

Proof. Consider y as the distance d(y, k). For every z in T (k) the weighted distance from z to P(x̄, y), with y in (k, h), is given
by:

wzd(z, y) = wzd(z, k) + wzy,

and it is a continuous monotone non decreasing function w.r.t. y in (k, h). This implies that E(P(x̄, y)) and µ(P(x̄, y)) are
continuous monotone non decreasing functions in y as well. Hence, due to continuity, there must exist a point ȳ ∈ (k, h)
such that E(P(x̄, ȳ)) = γ , and ∀y ≠ ȳ in (k, h) for which E(P(x̄, y)) ≤ γ , one has µ(P(x̄, y)) ≤ µ(P(x̄, ȳ)).

Notice that, when E(P(x̄, h)) ≤ γ , one always has ȳ = h. �

The same result applies if one fixes x̄ in T (k) and searches for a path P(x̄, ȳ) with ȳ in (k, h) that maximizes the minimum
weighted distance under the assumption that E(P(x̄, h)) ≤ γ . In this case, when E(P(x̄, k)) ≤ γ , one always has ȳ = k.

In view of the above results, one can always augment the set of vertices of T by adding two semivertices in each edge of
T , thus obtaining the corresponding augmented tree T̄ . Then, the optimal solution of the continuous version of problem P3
in T again corresponds to the optimal solution of the discrete version of the same problem in T̄ . Hence, the problem can be
solved by applying the discrete version of the algorithm described in Section 3.2.

In order to find the semivertex ȳ ∈ (k, h) when x̄ ∈ T (h), one must solve the following linear program:

max y
s.t.
wzd(z, k) + wzy ≤ γ ∀z ∈ V (T (k))
0 ≤ y ≤ ℓ(k, h).

(37)

A similar problem can be formulated to find the semivertex in (k, h) related to x̄ ∈ T (k). As before, the overall time
complexity for augmenting the tree T is O(n2).

For the special case of finding a path P(x, y) with both x and y in (k, h) one can solve in O(n) time the following linear
problem:

max µ

s.t.
µ ≤ wzd(z, k) + wzy ≤ γ ∀z ∈ V (T (k))

µ ≤ wtd(t, h) + wt

ℓ(k, h) − x


≤ γ ∀t ∈ V (T (h))

0 ≤ y ≤ x ≤ ℓ(k, h)
µ ≥ 0.

(38)

Hence, the following result holds.

Proposition 7. The overall time complexity for solving the continuous version of problem P3 is O(n2).

5. Conclusions

In this paper we dealt with extended facility location problems with equity measures as objective function. In particular,
we studied the problem of locating path-shaped facilities on a tree network, with non negative weights associated to the
vertices and positive lengths associated to the edges, minimizing the weighted Range objective function. We also analyzed
constrained variants of the problem, such as, minimizing the maximum weighted distance to a facility subject to a lower
bound on the minimum distance, and maximizing the minimum weighted distance subject to an upper bound on the
maximum one. These problems were first studied in [18] for the special case in which all the vertices of the network have
the sameweight. In the present paper, we addressed themore general case of arbitrary non negative vertex weights. In both
cases, our aim was to provide polynomial algorithms with very low complexity for a problem which is applicable in many
real-life decision making contexts. However, with the introduction of weights associated to the vertices, we had to resort to
a completely different approach for the solution of the problems.

With the additional results of the present paper –which also solves themore general case with a constraint on the length
of the path – we finalized the analysis of a complete class of optimization problems on trees. Further research can be now
driven towards other possible generalizations of the problem. For example, one can consider the location of a path-shaped
facility in new classes of graphs, such as networks with cycles, the simplest of which are perhaps given by the ‘‘outerplanar’’
graphs. Location problems of this type were already studied in [12] showing that a polynomial time algorithm can be found
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for the location of a path in an outerplanar graph w.r.t. the median criterion. Another possibility is to maintain the tree
structure of the network and study the location of subtrees minimizing the Range function. To the best of our knowledge,
the above generalizations of the problem have not been studied yet in the literature. In our opinion, both problems are
worthwhile: taking into account the applications, the interest relies on the fact that more connected topologies for the
network or for the facilities could better fit real-life problems; on the other hand, from a theoretical viewpoint, for these
problems the existence of a polynomial complexity algorithm is not still guaranteed.
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